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1 Introduction

For clinical trial designs with time-to-event endpoint, it is well-known that
the “effective” sample size is not number of patients, but number of events
based on log-rank test which is most powerful under the proportional haz-
ard (PH) assumption. The unique challenge is how to choose the optimal
combination of two important design elements: the sample size (i.e. number
of patients) and the length of study duration because there are numerous
possible combinations that can correspond to the same number of events.
A trial design with shorter study duration and smaller sample size is more
favorable in terms of drug development, but they can hardly be achieved
simultaneously in the time-to-event framework with fixed number of events.
For example, smaller sample size would only prolong the study duration be-
cause there are less chance to obtain the required number of events. On the
other hand, a shorter study duration requires a larger sample size. It then
becomes a game of weighting which factor is more important.

From financial perspective, larger sample size generally raises the cost
of the trial, but longer study duration also increases the trial maintenance
cost and most importantly, it delays market access, thus reducing potential
revenue. This typically has larger impact than trial cost to drug develop-
ers. However, before the investigational drug can reach market, designs with
very large sample size and short study duration may trigger questions from
regulatory agencies and health technology assessment (HTA) bodies on data
maturity despite statistically significant results, creating barriers for regula-
tory approval. For trials with rapid enrollment and short follow up duration
(relative to the median time of event), the reported Kaplan Meier (KM)
curve for the time-to-event endpoint such as overall survival (OS) may not
capture the majority of the survival curve, thus making it hard to assess the
long term benefit of survival and check the proportional hazard assumption.
In additional, such data packages also lack long term safety data monitoring,
making it difficult for the benefit and risk assessment. Given the potential
undesirable impact of immature data, drug developers usually choose de-
signs that ensure data maturity at the time of the primary readout. In
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practice, this requires many rounds of trial and error before the final de-
cision is made. Due to limited regulatory or established guidance on what
constitutes mature data, the solution is often based on individual experience
and judgement.

To find the optimal trial design without these iterations, we propose a
general framework that formulates the trial design process into an optimiza-
tion problem. Specifically, we create an objective function that represents
the total net revenue (i.e. total revenue - cost), and the goal is to maxi-
mize the objective function. In the meanwhile, data maturity requirement
will serve as constraints to the design parameters to eliminate combinations
that yield immature data at time of primary analysis. The solution of such
optimization problem is thus the desired study design which optimizes the
pre-specified goal while ensuring data maturity required for drug approval.

The rest of the paper is organized as follows. In Section 2, we briefly
review traditional design process for clinical trials with time-to-event end-
point. In Section 3, we present a framework of formulating the trial design
procedure to an optimization problem. In Section 4, we introduce a way to
find the optimal solution for the proposed optimization problem. In Section
5, we demonstrate the application of our proposal through a hypothetical
example of phase III oncology clinical trials. We end this paper in Section
6 with a few concluding remarks. Technical details are provided as online
supplementary material.

2 Current approaches for trial design with time-
to-event endpoint

Let us assume there are in total N patients enrolled into the clinical trial.
For patient i, denote Ai the time from study start to the time of enrollment;
denote Ti the time from study entry to the time of onset of event; and Ci
is the time from study entry to loss to follow up. Assuming each patient
is followed up until a time of event or the end of study, whichever comes
first, then at primary analysis time S (relative from study start), we observe
Ui = min(max(S−Ai, 0), Ti, Ci) where this patient either experienced event
if Ui = Ti; or is loss to follow up if Ui = Ci, or is administratively censored if
Ui = S−Ai. Specifically we denote the event indicator δi = 1[Ui = Ti], event
count Ni(x) = 1[Ui ≤ x, δi = 1] and at risk count Yi(x) = 1[Ui ≥ x]. For a
parallel design with two treatment arms, let Zi = 0, 1 indicate two treatment
groups and p0, p1 indicate the corresponding randomization probability.
Suppose the cumulative distribution function of Ti|Zi = j is Fj(t), and of
Ci|Zi = j is Gj(t) , j = 0, 1. Further denote the hazard and density function
of Ti|Zi = j as λj(t) and fj(t).

Currently, most designs for time-to-event endpoint assume proportional
hazard, i.e. λ1(t)/λ0(t) is a constant, denote as HR. The logrank test statis-
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tic (Z) used for formal hypothesis test of H0 : HR = 1 has the following
form:

Z =

∑
k

(
X(k) −

∑
Y1(tk)∑

Y0(tk)+
∑
Y1(tk)

)
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k

∑
Y0(tk)·

∑
Y1(tk)

(
∑
Y0(tk)+

∑
Y1(tk))2

,

where {tk} is the complete set of event times in the trial, X(k) is the assigned
treatment for the patient who fails at tk, and

∑
Yj(tk) =

∑
i:Xi=j

Yi(tk) is
the number of patients in arm j at risk at time tk.

Based on asymptotic theory and arguments in [Schoenfeld, 1981], the
logrank test statistic (Z) approximately follows normal distribution with
mean logHR

√
p0p1(Nd(t)) and variance 1. Interestingly, one can find that

d(t) = P (δi(t) = 1), thus Nd(t) can be interpreted as the number of required
events. This effective sample size based on logrank test with statistical power
1− β and Type I error rate α can then be calculated as follows:

Ea =
(zα + z1−β)2

p0p1(log(HR))2
. (1)

This means as long as the number of events Ea is observed, the statistical
power of 1−β can be achieved. This is why in practice, the primary analysis
timing of clinical trials with time-to-event endpoint is driven by the total
number of events. Provided with accrual duration Sa and accrual rate r(·),
the expected number of events observed at S is calculated as E(S;Sa, r(·)) =
E(0) + E(1) where

E(j) = N Pr(δi = 1 | Zi = j) Pr(Zi = j)

= N Pr(Ai + Ti ≤ S, Ti ≤ Ci | Zi = j) Pr(Zi = j)

= N

∫ min(Sa,S)

0

∫ S−t

0
[1−Gj(x)]fj(x)dxdH(t) Pr(Zi = j)

=

∫ min(Sa,S)

0

∫ S−t

0
[1−Gj(x)]fj(x)r(t)dxdtPr(Zi = j) (2)

and H(t) = Pr(Ai < t) = 1
N

∫ t
0 r(a)da is the probability of being enrolled

into the study before time t. The accrual rate r(t) can be flexible, taking
on any of the following forms:

r(t) =


ru Uniform accrual rate

min(rmax, a0 + a1t) Linear with maximum rate

rtk , tk−1 < t ≤ tk for k = 1, 2, ... Piecewise accural rate

Then, study duration S could be solved from equation (3)

E(S;Sa, r(·)) = Ea. (3)

3



Meanwhile, the total sample size is obtained immediately by

N =

∫ Sa

0
r(t)dt. (4)

Notice that generally, this is a four-parameter (N , S, Sa, r(·)) and two-
equations (3 and 4) problem. For uniform accrual, as long as two of these
four parameters are provided, the other two are then determined, so is the
trial design. Popular statistical design software EAST (http://www.cytel.
com/software/east) for example allows the user to input either (r(·), Sa),
or (S, Sa, r(·)/N).

However, current softwares are not able to provide the optimal design
under a pre-specified goal, be it 1) minimizing S and N simultaneously, or 2)
minimizing total cost of trial or 3) maximizing net revenue given sufficiently
mature data. Usually, investigators have to try and compare different input
values of (r(·), Sa) to yield (N,S) for many rounds until the one that best
meet the goal in their mind is found. Instead of this trial-and-error approach,
we propose a trial design strategy that can directly yield the optimal solution
of design parameters (N , S, Sa, r(·)) to achieve the goal.

3 Method

The essence of our proposal is to provide a framework to determine the
optimal combination of sample size and study duration while maintaining
the data maturity. First, we introduce an objective function to quantify the
goal that the investigator is trying to achieve with the design. From drug
sponsor’s perspective, that goal is usually based on financial evaluations, i.e.
maximizing the expected net revenue (ENR) the drug can generate. The
proposed objective function links both sample size N and study duration
S to these financial terms directly and thus, by maximizing it, the solution
is the trial design that yields the highest ENR. Next, we incorporate data
maturity into the framework by placing constraints on the feasible combi-
nations of (N,S) so that the resulting optimal design will guarantee mature
data (defined by the user) at time of primary analysis.

3.1 Expected net revenue as an objective function

The ENR consists of two components, trial cost and expected total revenue.
Trial cost usually increases with sample size and study duration, due to the
routine costs of maintaining clinical site and data monitoring procedures.
Therefore, we decompose the entire trial cost into three parts: a fixed cost
c0, a cost per each patient enrolled c1, and a cost per each unit time c2.
Forecasting revenue once a drug product reaches the market is typically
a complicated process in practice. In oncology, it may even require some

4

http://www.cytel.com/software/east
http://www.cytel.com/software/east


dynamic modeling of patient flows because most cancer treatments are pre-
scribed by line of therapy. In this work, we capture the essence of total
revenue and formulate it as the integration of revenue at time t, b(t) (in US
dollar) over total sales duration, which is the period from when the drug
reaches the market to the time of loss of exclusivity (LOE). Let l denote
the duration between date of trial start and LOE and l0 denote the time
between primary analysis and market access, then the approximate total
duration of sales is l − (S + l0).

The well-known risk of drug development is that not all phase III trials
will be successful. If a drug becomes a marketed product, all the total
predicted revenue can be realized, but if it eventually fails in regulatory
approval or proper reimbursement assessment, the total revenue becomes
zero. We introduce P to represent the probability that the total revenue
can be realized. Then, the objective function is the difference between the
expected total revenue and trial cost expressed in equation (5).

ENR(N,S) := P ·
∫ l−S−l0

0
b(t)dt︸ ︷︷ ︸

Revenue

−
(
c0 + c1N + c2S

)︸ ︷︷ ︸
Cost

(5)

where (N,S) ∈ C

In reality, drug sponsors have to overcome trial success, regulatory success
and market access success before patients around the globe can have ac-
cess to the effective new treatment. We propose several statistical terms to
facilitate the estimation of this probability in the next section. For those
factors outside of the trial data itself is beyond the scope of this paper and
will not be discussed. Note that if P is set to zero, the objective function
represents only the negative of trial cost. By maximizing it, the optimal
design minimizes the trial cost.

We also add constraints denoted as C on the design parameters (N,S)
to represent the additional requirements on mature data from regulatory
as well as applicable health technology assessment (HTA) agencies. Differ-
ent options of such requirement in terms of design parameters are further
discussed in Section 3.3.

3.2 Probability of success P

A natural choice of P is the probability of reaching statistically significant
efficacy result. Once the number of events is fixed with the assumed treat-
ment effect HR, P in equation (5) becomes the power 1 − β. However, a
statistically significant efficacy readout does not automatically translate into
a regulatory approval. There are many other assessments performed by the
regulatory agency before approval is granted. One of the most important
evaluation related to efficacy is whether the treatment benefit is clinically
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meaningful in light of the concurrent treatment paradigm in the proposed
indication. A systematic review of more than 300 initial applications of new
drugs between 2000 and 2012 reveals that only 73.5% of the applications
are approved [Sacks, 2014] with one major source of delay or denial of ap-
proval being lack of clinically meaningful efficacy. We will next incorporate
the clinical meaningfulness into the calculation of P to ensure that revenue
is not generated unless trial is both statistically significant and clinically
meaningful.

Unlike statistical significance, clinically meaningful results require the
improvement of treatment effect big enough to be meaningful for patients in
practice. One commonly used efficacy measure is median survival time, and
the difference or ratio of medians between treatment and control arm typ-
ically represent relative treatment effect measures. Both American Society
of Clinical Oncology (ASCO) and European Society for Medical Oncology
(ESMO) also recognize these measures by incorporating them into their pro-
posed value frameworks to evaluate the benefit of cancer therapies (Lowell
et al. 2016; Cherny et al. 2017). We therefore propose the following two
measures for clinically meaningful treatment effect:

A1: m̂1 − m̂0 > d0

A2: m̂1/m̂0 > r0

where m̂j is the estimated median survival time of arm j. With the as-
sumption of exponential distribution of survival time with parameter λj ,
loss to follow-up time with parameter ηj for arm j, and uniform accrual,
we are able to figure out the asymptotic distribution of m̂j , j = 0, 1. Then
the probability of achieving either proposed clinical meaningful measures,
P (Ak), k = 1, 2, can be written as follows with details in Appendix A:

P (A1) = 1− Φ

 d0 − log 2
λ0

(
1

HR − 1
)

log 2
λ0

√
1

HR2E(1) + 1
E(0)


P (A2) = 1− Φ

 log (r0HR)√
1

E(1) + 1
E(0)

 ,

where E(j), j = 0, 1 is calculated from equation 2. By choosing either A1 or
A2 as the measure of clinical meaningfulness, we define Pk = (1− β)P (Ak)
by taking both statistical significance and clinical meaningfulness into con-
sideration.

3.3 Data maturity as constraints

Directly maximizing the ENR in equation (5) could possibly yield a design
with very short study duration, which is more likely to be deemed imma-
ture by either regulatory agency or HTA bodies. This is because the design
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with short study duration would lead to higher chance of producing KM
curves with only the beginning portion of the survival curves, which is hard
to assess long term benefit. Regulators as well as HTA agencies around the
globe have now put more emphasis on data maturity, despite of statisti-
cally significant p-value and clinically meaningful treatment effect. Hence,
we incorporate data maturity into our optimal trial design framework for
this concern. In particular, data maturity requirements are placed as con-
straints on the design parameters so that any sets of (N,S) that can cause
an immature KM curve are prohibited from being the optimal design.

To our knowledge, there has been no unanimous agreement or general
guideline on the exact measure for data maturity. The first discussion on
this topic appeared in a two-page survey by Shuster [Shuster, 1991], with
additional discussions in [Altman, 1995], [Schemper, 1996], and [Clark et al.,
2003]. Shuster introduced some commonly used measures of data maturity
at that time and stated their necessity in statistical terms, although he
remained skeptical on their utility. Since then, this thread of discussions on
data maturity focused on calculating median follow up time.

We here summarize the following measures of mature data commonly
used in practice:

C1. S − Sa ≥ t0, t0 > 0

C2. Ea/N ≥ e0, e0 ∈ (0, 1)

C3. P(m̂KM
j estimable for j=0,1)> p0, p0 ∈ (0, 1)

C4. mfu ≥ m0, m0 > 0

where m̂KM
j denotes the estimated KM median for arm j and mfu is the

true median of follow up time Ri(t) = min(t−Ai, Ci), i = 1, ..., N [Schemper,
1996] defined as mfu = {m : P (Ri(S) ≤ m) = 0.5}.

Measure C1 requires the minimum follow-up time is t0. Measure C2
requires a the proportion of observed events Ea in total sample N is at least
e0. As Ea is fixed under assumed HR, it is equivalent to setting an upper
bound for the total sample size N . Measure C3 represents high probability
that median KM estimates are available for both arms. As the lowest point
of the KM curve happens at the time of last event, the event {KM median is
achieved} is equivalent to {survival probability at last event time no bigger
than 50%}. We therefore have

P (m̂KM
j estimable j = 0, 1) = P (min

x
ŜKM0 (x) ≤ 0.5)P (min

x
ŜKM1 (x) ≤ 0.5) (6)

where minx Ŝ
KM
j (x) indicates the lowest point of KM curve for arm j. Equa-

tion (6) can be obtained by simulations. Ensuring measure C4 is equivalent
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to require P (Ri(S) ≤ m0) ≤ 0.5 where

P (Ri(S) ≤ m0) = P (min(S −Ai, Ci) ≤ m0) = 1− P (S −Ai > m0)P (Ci > m0)

= 1−min

(
max

(
0,

1

N

∫ S−m0

0
r(t)dt

)
, 1

) 1∑
j=0

(1−Gj(m0))Pr(Zi = j).

By incorporating both probability of success and data maturity, the op-
timal trial design is eventually the solution of the following maximization
problem:

max
N,S

ENRk(N,S) = (1− β)P (Ak)
∫ l−S−l0
0 b(t)dt−

(
c0 + c1N + c2S

)
(7)

s.t. (N,S) ∈ C ⊆ {C1, C2, C3, C4}.

C is the user specified set of constraints, which is an arbitrary combination
of C1, C2, C3, C4. By specifying one or more threshold values t0, e0, p0,
and m0, the corresponding constraints will be activated so that the optimal
design will not violate these data maturity requirements.

4 Optimization

We have demonstrated that the optimal trial design is the solution of the
optimization problem (7). In this section, we will introduce a general algo-
rithm to solve it. Since it is a nonlinear constrained optimization problem
without convex feature, general optimization techniques can not be applied.
However, incorporating the special feature of trial design, we are able to
simplify the problem to a simple line search.

We first explore the feasible set of this optimization problem. As afore-
mentioned, even though the trial consists of four design parameters: sample
size N , study duration S, accrual duration Sa, and accrual rate r(·), the
common approach is given r(·) to solve for (N,S). This is because the max-
imum accrual rate is typically provided by the clinical trial operations team
and the result of the feasibility assessment. Therefore it can not be freely
adjusted upward. So we will display the feasible sets of parameter (N,S)
given r(·). Such visualization procedure helps to narrow down the search
area efficiently which eases the optimization procedure.

For illustration purpose, we set the exponential event time with medians
10 and 20 months for control and treatment arm, respectively (i.e. HR =
0.5), with 1 to 1 allocation ratio. Additionally, let β = 0.1, α = 0.025,
thus the number of events Ea calculated from equation (1) is 88. With
further assumption of no loss to follow-up, and uniform accrual rate (i.e.
r(·) = ru), the corresponding feasible sets are shown in Figure 1. Given the
natural constraint that the accrual period Sa is bounded by 0 and study
duration S, the feasible sets of (N,S) will not cover all N -S plain, but only
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a portion of it, which is the shaded area. If the accrual rate is fixed at a
number e.g. 10 patients per months, then the feasible set further reduces
to a single red curve as shown in Figure 1. Fixing sample size N , when
accrual rate ru increases from 10 to 30, study duration S decreases since
events accumulates much faster leading to shorter time to reach 88 events.
It is easy to see that given N , smaller S always leads to larger ENR based
on equation (7). Therefore, the optimal design only lies on the curve where
ru is the maximum feasible accrual rate.
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N
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ru = 10

ru = 20

ru = 30

Ea=88

Figure 1: Feasible sets on N-S plane. Shaded area represents possible combinations
of (N,S) under the natural constraint 0 < Sa ≤ S. Colored curves are the feasible
sets with provided ru.

After considering the data maturity constraints C1 − C4, the feasible
sets are further restricted, as shown in Figure 2 where each panel illustrates
the impact of one data maturity measure. The shaded lines represents the
feasible sets in figure 1 that are no longer available under the specific data
maturity requirement. Mostly, the eliminated sets are of large sample size
but short study duration since such trial designs may lead to immature
results in general.

The procedure of finding the optimal design based on equation (7) in-
cludes three steps. First, we figure out the feasible sets of (N,S), which is
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(b) Feasible sets with C2 constraint

N

S

ru = 10
ru = 15
ru = 20
e0 = 50%

Ea=88

100 200 300 400 500

1
0

2
0

3
0

4
0

5
0

6
0

7
0

(c) Feasible sets with C3 constraint
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(d) Feasible sets with C4 constraint
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Figure 2: Feasible sets of (N,S) under different data maturity constraints. Shaded
area represents feasible sets satisfying the given data maturity requirements, while
the shaded lines cover the region that are no longer available in Figure 1. Colored
curves are the feasible sets when ru is given. (a) Data maturity requirement C1 is
activated with t0 = 10 month. (b) Data maturity requirement C2 is activated with
e0 = 50%. (c) Data maturity requirement C3 is activated with p0 = 80%. (d) Data
maturity requirement C4 is activated with m0 = 12 month.
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a single curve given the maximum accrual rate. Second, we remove unqual-
ified part of the curve according to the pre-specified constraints C. Finally,
we conduct a line search along the remaining curve to find the design pa-
rameter combination that maximizes the objective function. This is not a
heavy task as N only takes integers and is further bounded by Ea and data
maturity constraints.

5 Case Study

In this section, we will demonstrate how to use the proposed framework
to design a hypothetical phase III oncology clinical trial and compare re-
sults with the traditional approach. Suppose the study sponsor would like
to conduct an open label randomized clinical trial in a specific subtype of
acute myeloid leukemia comparing the investigational new drug with the
standard of care treatment. The primary endpoint for this indication that
is regulatory approvable is overall survival (OS). With a type I error rate of
0.025 (1-sided), and power of 90%, the trial would require 326 events under
the assumption of proportional hazards and exponential distributions with
median OS of 21.5 months for the investigational drug vs 15 months for the
standard therapy arm, i.e. HR=0.70. The loss to follow up is also set to be
exponentially distributed with 5% annual rate for both arms.

Suppose 140 sites are planned to be used with an estimated overall en-
rollment rate of 40 patients per month at full speed after 7 months linear
ramp up. With this information, the traditional approach can generate sev-
eral design options as shown in Table 1, with input of peak enrollment rate
rmax and sample size N , and output of enrollment duration Sa and study
duration S.

Due to the rare indication and high cost of standard therapy, the over-
all trial is very expensive. Specifically, we assume the cost per patient is
c1 =$300,000 and cost per month for site maintenance is c2 =$100,000 with
a fixed upfront cost of c0 =$5,000,000. To get a rough idea of the total trial
cost, we also report the cost of each scenario in Table 1, which is calculated
based on equation (5) with P = 0. For instance, suppose we plan the study
with a sample size of 500 and a study duration of 40.0 months, then the total
trial cost could add up to $159.0 million, which is the most budget-friendly
option among all 8 potential designs. This is because design 1 has smallest
sample size and longest duration and per patient cost is much higher than
the monthly site maintenance cost.

We further assume that the total duration from trial start to date of loss
of exclusivity (LOE) is 15 years, and time between final analysis and market
access is approximately 10 months. Suppose after drug enters the market,
the sale is linearly increasing for 6 years until it reaches the peak sale of $50
million per month. The resulting ENR using equation (5) with P = 1 are
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Table 1: Possible study designs given rmax = 40 patients per month

Design option 1 2 3 4 5 6 7 8

N 500 550 600 650 700 750 800 850
S 40.0 35.6 32.8 30.9 29.6 28.7 28.1 27.7
Sa 16 17.3 18.5 19.8 21 22.3 23.5 24.8

Cost($M) 159.0 173.6 188.3 203.1 218.0 232.9 247.8 262.8
ENR($M) 5865.4 6047.9 6159.6 6230.1 6273.9 6299.3 6311.5 6313.7

P(m̂1 − m̂0 > 4) 88.3% 88.3% 88.2% 88.2% 88.2% 88.1% 88.1% 88.1%
ENR1($M) 5163.1 5318.6 5412.4 5470.4 5505.4 5524.7 5532.6 5532.1

P(m̂1/m̂0 > 1.27) 86.7% 86.6% 86.6% 86.6% 86.6% 86.6% 86.6% 86.6%
ENR2($M) 5062.2 5216.8 5310.4 5368.4 5403.5 5423.0 5431.0 5430.6

C1: S − Sa 24.0 18.4 14.3 11.1 8.6 6.4 4.6 3.0
C2: Ea/N 0.65 0.59 0.54 0.50 0.47 0.43 0.41 0.38
C3: P (m̂KM

j estimable j=0,1) 100.0% 99.9% 99.2% 97.6% 94.0% 89.8% 87.8% 84.9%

C4: mfu 29.4 24.5 21.1 18.6 16.7 15.2 14.0 13.0

shown in Table 1.
The aforementioned revenue can’t be realized without statistical signif-

icant and clinically meaningful trial results. At the planned final analysis,
the minimum observed HR to achieve statistical significance is 0.805. Sup-
pose a median OS of 15 months is observed for the standard therapy arm,
then a median of 18.64 months for the treatment arm (i.e. difference of
3.64 months) approximately corresponds to statistical significance. Suppose
according to the key opinion leaders in the medical community, a minimum
of 4 (> 3.64) months in median difference is required for the treatment to
be meaningful to patients and treating physicians, then this translates to an
observed treatment median of at least 9.5 months. Table shows the resulting
ENR1 and ENR2 for d0 = 4 and r0 = 1.27.

In order to capture data maturity, the last four rows of Table 1 show the
four proposed measures C1−C4 for each design option. Suppose we require
the minimum follow-up time is at least the median of control arm, i.e. 15
months to represent mature data at time of primary analysis. Meanwhile,
assume the clinical meaningful results request m̂1/m̂0 > 1.27. Then in terms
of ENR2 from equation 7, we noticed that scenario 1 is no longer the optimal
design. Instead, scenario 2, which has 550 patients, 35.6 months of study,
and S − Sa = 18.4 > 15, yields a total of $5216.8 million net revenue and
outperforms the rest. Even though scenario 3 to 8 provide higher ENR2,
but they fail to satisfy the data maturity requirement.

In our proposed framework, there is no need to calculate all parts sep-
arately and try multiple options before choosing the best design. Instead
we are able to obtain the optimal design given the objective function and
specified data maturity constraints. Following the optimization process de-
scribed in section 4, we first determine the feasible design sets for the given
enrollment function as that is typically fixed and provided by the opera-
tions team as a result of the feasibility assessment. The grey curve in figure
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3 represents all potential designs. Then, we remove the sets that do not
satisfy the data maturity constraint C1 : S − Sa ≥ 15, which is the dotted
line in the figure. Finally, we search the remaining feasible sets and find the
optimal design that provides the maximal ENR2. It turns out that under
this hypothetical setting, a trial design with sample size 590, study dura-
tion 33.3 months, 18.2 months of accrual, could achieve $5295.1 million of
ENR2, $78.3 million more than that in previous scenario 2. Meanwhile, the
minimum follow-up time is 15 months, which agrees with the data maturity
requirement.
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Figure 3: Feasible sets, optimal design, and the corresponding design parameters
shown in N -S plane.

6 Conclusions

In this paper, we put forward a novel trial design strategy to directly yield
the desired study design in investigator’s mind without iterative discussions.
By incorporating cost and revenue information, the trial design procedure
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could be formulated into an optimization problem which the solution is
the optimal design in terms of ENR. An important feature of the proposed
method that sets it apart from traditional approach is it puts everything
into a statistical framework, including clinical meaningful results and data
maturity requirements. The output trial design thus automatically satisfies
the user specific data maturity requirements which increases the odds in
drug approval. This feature makes it particularly appealing in real world
applications.
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A Calculating the probability of clinical meaning-
ful treatment effect

Following the notation and assumption in section 2, the likelihood function
for observed data (Ui, δi, Zi), i = 1, 2, ..., N0 +N1 is

L(λ0, λ1;Ui, δi, Zi) =
1∏
j=0

Nj∏
i=1

(
[f(Ui;λj)]

δi [S(Ui;λj)]
1−δi

)1[Zi=j]

=
1∏
j=0

Nj∏
i=1

(
[λ(Ui;λj)]

δi [S(Ui;λj)]
)1[Zi=j]

.

Plug in the exponential survival and hazard function, we obtain the log-
likelihood (for a single observation)

`(λ0, λ1;Ui, δi, Zi) =
1∑
j=0

1[Zi = j](log(λj)δi − λjUi).

Thus, the Fisher’s information is

I(λj) = −E

[
∂2`

∂λ2j

]
=
E[δi|Zi = j]

λ2j
=
Pr(δi = 1|Zi = j)

λ2j
,

and for Nj observations, the corresponding Information is

In = NjI(λj) =
NjPr(δi = 1|Zi = j)

λ2j
=
E(j)

λ2j
.

Therefore, it follows from the property of MLE so that the estimated variable

λ̂j → N (λj , I−1
n ) = N

(
λj ,

λ2j

E(j)

)

in distribution as E(j) → ∞. For exponential distribution, the estimated
median follows

m̂j =
log(2)

λ̂j

and by delta method,

m̂j → N

(
log(2)

λj
,
(log(2))2

λ2jE
(j)

)
.

Therefore, P (A1) could be figured out analytically given the true parameter
values by

m̂1 − m̂0 → N
(

log 2

λ1
− log 2

λ0
, (log 2)2

(
1

λ21E
(1)

+
1

λ20E
(0)

))
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⇒ P (A1) = P (m̂1 − m̂0 > d0) = 1− Φ

 d0 − log 2
(

1
λ1
− 1

λ0

)
log 2

√
1

λ21E
(1) + 1

λ20E
(0)

 .

Similarly, for P (A2), we first calculate the asymptotic distribution for log(m̂j)
by delta method

log m̂j → N
(

log

(
log(2)

λj

)
,

1

E(j)

)
.

Thus,

log m̂1 − log m̂0 → N
(

log

(
λ0
λ1

)
,

(
1

E(1)
+

1

E(0)

))

P (A2) = P (m̂1/m̂0 > r0) = P (log m̂1−log m̂0 > log(r0)) = 1−Φ

 log
(
r0λ1
λ0

)
√

1
E(1) + 1

E(0)

 .

By replacing λ1 with λ0HR, we obtain the formulas in section 3.2.
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