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Global Example

Data Generation

We sample 800 data from a mixture model

1

4
N (µ1, 0.5) +

3

4
N (µ2, 1) (1)

Based on the samples, we would like to estimate µ1 and µ2

Density Plot (µ1 = 0, µ2 = 2.5)
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Global Example (Con’t)
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log-Likelihood function

logL(θ|x) ∝
∑
i

log{π exp(− (xi − µ1)2

2σ2
1

) + (1− π) exp(− (xi − µ2)2

2σ2
2

)} (2)

Our purpose is to find out the optimum point (maximum) on the objective
function (logLikelihood function h(θ|X ))
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Stochastic Search

Basic Solution

Purpose is to find out the optimum

Simulate points over Θ until sufficiently high h(θ) is observed, or
reach certain stopping criterion

Compare to grid search?

Blind Search, i.e. does not rely on h(θ)

Range of Maximum Found among 500 Trials
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Stochastic Search

Gradient Descent Related Methods

Gradient Descent (Hill-Climbing)

θ(j+1) = θ(j) + αj∇h(θ(j)|X ) (3)

Newton-Raphson (a special case)

θ(j+1) = θ(j) − [∇2h(θ(j)|X )]−1∇h(θ(j)|X ) (4)

Stochastic Gradient Descent (SGD)

θ(j+1) = θ(j) + αj∇h(θ(j)|Xi ) (5)

Mini-Batch SGD

θ(j+1) = θ(j) + αj∇h(θ(j)|X(i :i+n)) (6)

Junyi Zhou (Indiana University) GLM Extensions April 6, 2019 6 / 29



Newton-Raphson Solutions
θ(j+1) = θ(j) − [∇2h(θ(j)|X )]−1∇h(θ(j)|X )
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Fast and Aggressive (likely to diverge)

Deterministic, i.e. path is decided given an initial point

Get trapped at saddle points
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Stochastic Gradient Descent (SGD) Solutions
θ(j+1) = θ(j) + αj∇h(θ(j)|Xi )
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Slow and Conservative (behaviour depends on αj , how?)
Stochasticity comes from order of input data, but path is determined once
order is fixed
Have chance to reach global optimum (same start points as in NR method)
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Stochastic Gradient Descent (SGD) Solutions
θ(j+1) = θ(j) + αj∇h(θ(j)|Xi )
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a = 0.001
a = 0.005
a = 0.01
a = 0.02

Slow and Conservative (behaviour depends on αj , how?)
Stochasticity comes from order of input data, but path is determined once
order is fixed
Have chance to reach global optimum (same start points as in NR method)
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Stochastic Search
Mini-batch SGD Solutions

Similar to SGD, but more stable, efficient than SGD

Simulation study of the relationship between learning rate and
performance

Learning Rate 0.1 0.05 0.02 0.005 0.002

Mini-Batch NA 82.5% 63.5% 14.5% 0.0%

SGD 32.5% 29.0% 20.5% 5.0% 0.0%

Table: Probability of Reaching Global Maximum Start from (3, 5)
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Gradient Descent Optimization Algorithm
Example of tradional Gradient Descent

Recall θ(j+1) = θ(j) + αj∇h(θ(j)|X )

Fixed learning rate α = 0.0025

Zigzag behaviour on the mountain ridge
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Gradient Descent Optimization Algorithm

Momentum Based Methods

Momentum
I SGD has trouble navigating on mountain ridge (ravines)
I Momentum add a fraction γ of past time step to current update step

to solve this problem

vj = γvj−1 + αj∇h(θ(j)) (7)

θ(j+1) = θ(j) + vj (8)

I Momentum helps to escape from saddle points

Nesterov Accelarated Gradient
I Account the next step into current step
I Explore it if interested
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Gradient Descent Optimization Algorithm
Gradient Descent with Momentum

Fixed learning rate α = 0.0025 and γ = 0.5

Mild zigzag behaviour with less oscillation; faster

Behaviour around the optimum?
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Gradient Descent Optimization Algorithm

Adaptive Learning Rate Based Algorithm

AdaGrad
I Finding out a good question-specific learning rate is not a piece of cake
I AdaGrad adapts the learning rate and different parameters can have

different learning rate
I Larger updates for parameters associated with infrequent features, and

vice versa
θ(j+1) = θ(j) + α(Gj + εIp)−1/2∇h(θ(j)) (9)

where Gj = diag(
∑j

t=1(∇iht)
2)

I Do not need to tune α any longer

Adadelta

RMSprop

Adam

AdaMax
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Gradient Descent Optimization Algorithm
AdaGrad Solutions

Fixed α = 0.4 (usually do not need to tune a lot) and ε = 1× 10−8

No zigzag

Learn fast at beginning, but can be extremely slow after tons of iterations
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Stochastic Search

Stochastic Gradient Method

Stochastic Gradient (notice the name)

∇h(θ(j)) ≈
h(θ(j) + βjζj)− h(θ(j) − βjζj)

2βj
ζj =

∆h(θ(j), βjζj)

2βj
ζj (10)

θ(j+1) = θ(j) +
αj

2βj
∆h(θ(j), βjζj)ζj (11)

where ζj is a unit sphere with random direction

Need to tune αj and βj (too much to tune)

θ(j+1) = θ(j) + k∆h(θ(j), βjζj)ζj (12)

How much role does h(θ) play?
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Stochastic Search
Stochastic Gradient Solutions
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k = 2e−3
k = 1e−3
k = 5e−4
k = 1e−4

Set βj = 1/
√
log(1 + j)

Behaviour quite depends on k and βj
Have chance to find global optimum
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Stochastic Search
Stochastic Gradient Simulation Results
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500 traces

Can be trapped at other places
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Stochastic Search
Stochastic Gradient Simulation Results

After 25 Steps, k = 2e−3
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Converge very fast

Sensitive to k
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Stochastic Search

Simulated Annealing

A method coming from simulating the physical process of heating a
material and then slowly lowering the temperature to increase its
ductility and hardness

Atoms within a solid material reaches equilibrium state during slowly
cooling process

Rationale is based on Boltzmann-Gibbs distribution

pi =
e−

εi
kT∑

j e
−

εj
kT

∝ e−
εi
kT (13)

where εi is the energy of the i th state

Under certain temperature, lower energy level has higher probability

When cooling down, system loses energy so that prone to lower
energy states

Cooling slowly makes system have higher chance to reach equilibrium
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Stochastic Search

Simulated Annealing Algorithm

Given a random perturbance βjζj , where ||ζj || = 0

θ(j+1) =

{
θ(j) + βjζj with probability ρ = min{exp(−∆εj/Tj), 1},
θ(j) with probability 1− ρ,

(14)
where ∆εj = h(θ(j) + βjζj)− h(θ(j))

Tj represents temperature at j th iterations, and can be decrease in
1/log(1 + j) or 1/(1 + j)2

βj also need to be carefully adjusted, e.g.
√

Tj

Very different from Stochastic Gradient?

How much role does h(θ) play?

Works for either unconstrained or constrained optimization problems
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Stochastic Search
Simulated Annealing Solutions
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Slow−Cool
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Fast−Cool

Slow: Tj = 1/log(1 + j); Middle: Tj = 1/(1 + j); Fast: Tj = 1/(1 + j)2

If cooling too fast, it is hard to reach ’equilibrium’
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Stochastic Search
Simulated Annealing Simulation Studies
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(Compare with the previous one?)

Small Scale: βj = T 0.5
j ; Large Scale: βj = T 0.3

j

Note that the stopping position may not be the best result
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Stochastic Search
Simulated Annealing Simulation Studies (Con’t)

Cool-Down Speed Slow Median Fast

Small Scale 55.2% 50.6% 36.0%

Large Scale 54.8% 53.4% 46.2%

Table: Probability of Reaching Global Maximum Start from (3, 5)

Same parameter settings as before

There is a limitation

Note the correlation between scale and temperature

What else do you think?
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Is there any better way?
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EM Algorithm
Observed log-likelihood function

lo(θ|x) ∝
∑
i

log{πexp(−(xi−µ1)2/2σ21)+(1−π)exp(−(xi−µ2)2/2σ22)}

(15)
Complete log-likelihood function

lc(θ|x , δ) ∝ −
∑
i

δi (xi − µ1)2/σ21 −
∑
i

(1− δi )(xi − µ2)2/σ22 (16)

To accomplish E-step, we need to figure out E (δi |x , θ(k))

E (δi |x , θ(k)) =
πφ((xi − µ1)/σ1)

πφ((xi − µ1)/σ1) + (1− π)φ((xi − µ2)/σ2)
(17)

Then we could figure out the iterative updates of θ

µ
(k+1)
1 =

∑
i

xiE
(k)(δi )/

∑
i

E (k)(δi ) (18)

µ
(k+1)
2 =

∑
i

xi [1− E (k)(δi )]/
∑
i

[1− E (k)(δi )] (19)
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Complete Likelihood vs. Observed Likelihood

Figure: Complete Likelihood Figure: Observed Likelihood
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EM Solutions
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Stochastic Approximation
Monte Carlo EM (MCEM)

Sometimes the E-step is not straight forward, so we use MC to
approximate the expectation

If we know the distribution of the unobserved part, we could sample
unobserved variable from its distribution and figure out the
expectation. E.g.

δi ∼ Binom(1,
πφ((xi − µ1)/σ1)

πφ((xi − µ1)/σ1) + (1− π)φ((xi − µ2)/σ2)
) (20)

E (δi |x , θ(k)) =
1

m

m∑
i=1

δi (21)
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Stochastic Approximation
Monte Carlo EM (MCEM)
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Check the variance of distance between MCEM and true EM step by step
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